
Theor Chem Acc (2006) 116: 316–325
DOI 10.1007/s00214-005-0066-0

REGULAR ARTICLE

M. Elstner

The SCC-DFTB method and its application to biological systems

Received: 13 April 2005 / Accepted: 28 September 2005 / Published online: 23 December 2005
© Springer-Verlag 2005

Abstract The Self-consistent charge density functional tight-
binding (SCC-DFTB) is an approximate quantum chemi-
cal method derived from density functional theory (DFT)
based on a second-order expansion of the DFT total energy
expression. Here, we review in detail the application of SCC-
DFTB to biological systems and several extensions of the
original formalism. The biological systems discussed turn
out to be a challenge for DFT due to the occurrence of weak
binding forces and charge transfer problems, both of which
are not properly described by recent DFT-GGA functionals.
Possible solutions and alternative strategies are presented
and the role of SCC-DFTB in a general quantum chemical
approach to biological systems is discussed.

Keywords DFT · SCC-DFTB · Dispersion interaction ·
QM/MM · Excited states · TD-DFT · Hydrogen bonds ·
Proton transfer

1 Introduction

The self-consistent charge density functional tight-binding
[1] (SCC-DFTB) is an approximate method, which is derived
from density functional theory (DFT) by neglect, approxi-
mation and parametrization of interaction integrals. It can
be viewed as an extension of the original non-self-consistent
DFTB [2] method, which is based on an optimized LCAO
basis set [3,4] and integral approximations, proposed in ear-
lier work [5]. DFTB is one variant of the tight-binding (TB)
family, which found its theoretical justification on the basis
of DFT [6] (a recent review discusses the manifold of TB
methods including DFTB [7]).
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SCC-DFTB (hereafter abbreviated with DFTB) consti-
tutes an alternative to the traditional semi-empirical (SE)
methods in Quantum Chemistry like the popular MNDO,
AM1 and PM3 schemes, which are derived from Hartree–
Fock (HF) theory. Formally, it has some similarity with
extended Hückel or CNDO theory, focussing on the matrix
elements it exhibits a stronger similarity with the Fenske–Hall
Scheme. However, DFTB is not a semi-empirical method in
a strict sense, since its parametrization procedure is com-
pletely based on DFT calculations, no fit to empirical data
has to be performed. In contrast to most SE methods DFTB
is a non-orthogonal method, that is, it is based on a non-
orthogonal basis set. In the framework of TB theory, this has
been emphasized to be a key factor for transferability [7].
Transferability denotes the ability of a parametrized method
to perform sufficiently well also for chemical environments
not included in the parametrization procedure (SE methods
have also been extended to non-orthogonality in the OMx
suite of methods [8,9]).

The descent of DFTB from DFT (GGA) is apparent in
the description of molecular systems. DFTB often resem-
bles DFT characteristics like the size of the single particle
(Kohn–Sham) energy gap (which is usually smaller com-
pared to ab initio methods), or the DFT tendency to underes-
timate reaction barriers, in particular proton transfer barriers
(which are usually overestimated at the HF level of theory).
Roughly speaking, DFTB gives results closer to the DFT
ones whenever there is a difference with respect to ab initio
methods. Of course, problems of the current DFT functionals
(GGAs) are also inherited, like the overpolarization in con-
jugated systems [10] which leads for example, to an under-
estimation of the bond alternation and the related problem in
the description of ionic and charge transfer excited states, or
the neglect of dispersion forces.

Till now, DFTB has been applied mostly to solid state and
cluster physics [11,12]. The challenges of bio-systems, the
large number of atoms and high structural flexibility, which
require the treatment of large system sizes and long sampling
times in combination with the need for a reliable descrip-
tion of weak binding forces (vdW and H-bonding), and the
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complicated potential energy surfaces of bio-molecules made
the way to a routine application of DFTB more laborious,
which has been partly reviewed recently [13,14].

To cope with extended systems, DFTB has been imple-
mented into linear scaling (O(N)) [15,16] and combined quan-
tum mechanical molecular mechanical (QM/MM) schemes
with the force fields AMBER [17], CHARMM [18], TIN-
KER [16] and Sigma [19]. Regarding molecular properties, it
has been extended to calculate NMR chemical shifts [20], IR
and Raman spectra [13,21–23], excited energy states [24–26]
and gradients [26,27] and the conduction through molecules
based on Greens Function techniques [28].

DFTB is comparable in computational speed with the
SE methods, the main cost is the solution of the generalized
eigenvalue problem in a minimal basis, no integrals have to
be evaluated during the run-time of the program. SE methods
are roughly 2–3 orders of magnitude faster than standard DFT
calculations using a DZP basis set. Since matrix diagonaliza-
tion is an O(N 3) process (N being the number of electrons
in the system) and integral evaluation with efficient algo-
rithms becomes O(N ) for large systems, the efficiency of SE
methods (compared with DFT and HF methods) is largely
based on the usage of a minimal basis. Roughly three orders
of magnitude higher efficiency allows for ten times larger
system sizes [with standard O(N 3) diagonalization] or 1,000
times longer MD sampling, that is, MD simulations in the ns
regime become easily feasible. This is an essential ingredient
for a reliable determination of the free energies for biomo-
lecular reactions (see also the contribution of Q. Cui in this
issue).

To supply useful information concerning biochemical
reactions, computational methods have to provide (1) the
possibility of sufficient sampling (i.e. have to be computa-
tionally very efficient) and have to be (2) accurate in the
description of the chemical reaction of interest. While the
first requirement overextends the capability of ab initio and
DFT methods and leads to the use of SE methods, the second
one also is not always complied by DFT, very often more
accurate methods are necessary (see, e.g. the discussion of
proton transfer reactions that follow). In the previous years, a
revival of fast SE methods became apparent due to the require-
ments of sampling in solution- and biochemistry, while post-
HF methods became surprisingly efficient using localization
procedures like in the local MP2 and local coupled cluster
approaches.

To meet both requirements (1) and (2), the efficiency of
SE methods has to be combined with the accuracy of post-HF
(or when applicable DFT) schemes. This can be achieved in
the so called dual level procedures [29,30] (where the reac-
tion path is calculated with a fast SE method and is then
refined at a higher level). Another promising route to an
accurate description of biomolecular reactions is a combi-
nation of QM methods as in the ONIOM [31] type meth-
odology or in non-additive QM/QM methods [32]. A third
possibility is to specifically parametrize SE methods for a
certain type of reaction. Transferability requires a high flex-
ibility of the computational method to incorporate various

environments, a quality, which definitely is limited in SE
methods (and DFTB). Adjusting parameters of SE methods
to certain chemical environments in the so called special reac-
tion parametrizations (SRPs) [33] may allow for an accuracy
for a specific chemical reaction, which can even be better
than that at the DFT or HF level, at the cost of impeding
transferability. However, the requirement of long sampling
times combined with high accuracy for that specific reaction
allows for a reliable treatment of the particular system.

In the following, we describe the theoretical basis of
DFTB briefly and then focus on its possible improvements,
extension, successes and failures with respect to recent bio-
molecular applications.

2 Method

SCC-DFTB [1] is derived from DFT by choosing a reference
density ρ0 as a superposition of neutral atomic densities ρα

0 ,
ρ0 = ∑
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0 and expanding the DFT exchange-correlation
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Equation (1) is the starting point for further approxima-
tions leading to the SCC-DFTB model (for details, please see
[1]):

(1) The charge density fluctuation δρ = ρ − ρ0 in the
second-order term is represented by atomic components, δρ =∑

α δρα , and the δρα are approximated (using a multipole
expansion) by atomic charge fluctuations �qα = qα − q0

α ,
which are computed via a Mulliken charge analysis. The inte-
gral over the 1/r term and the second derivative of Exc is
approximated by a function γ , which depends on the Hub-
bard parameter Uα (or chemical hardness ηα), leading to a
second-order term:

E2nd = 1

2

∑

αβ

γαβ�qα�qβ, (2)

where γαβ = γαβ(Uα, Uβ, Rαβ) and Uα = 1
2

∂2 Eat
∂q2

at
is the sec-

ond derivative of the energy of the atom α with respect to its
total charge.

(2) The Kohn–Sham orbitals �i are expanded in an opti-
mized LCAO basis set φµ as suggested by Eschrig and Berg-
ert [3], �i = ∑

µ ci
µφµ. This minimal basis set, consisting

of slightly compressed atomic orbitals, which are determined
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by solving the atomic Kohn-Sham problem in an additional
confining potential [2]

[T + veff(ρ) +
(

r

r0

)2

]φµ = εµφµ, (3)

has been shown to represent the molecular density better
than uncompressed atomic orbitals [5]. Originally, these opti-
mized orbitals were determined by treating r0 as a variational
parameter in DFT SCF calculations [3,4]. In the SCC-DFTB
framework, r0 is chosen to be twice the covalent radius and
can be further optimized. Similarily, the initial density ρα

0 is
determined using a different confining radius rd

0 . While the
determination of r0 can be compared with the optimization
of basis sets for DFT calculations, rd

0 can be regarded as an
empirical parameter as suggested by the work of Foulkes and
Haydock [6]. They showed, that the TB methodology can be
understood as an approximation to DFT, critically depend-
ing on the choice of an appropriate input density. The input
density ρ0 has to be optimized in order to minimize the error
of the TB total energy with respect to the true ground state
energy. Within DFTB, both confining radii usually have a
limited influence on molecular properties of interest. There-
fore, the process of choosing the confining radii cannot be
compared with the optimization procedure in semi-empirical
MO theory, where parameter determination is performed by
a ‘brute force optimization’ in a multidimensional parameter
space. ρ0 = ∑

α ρα
0 and φµ enter the calculation of the

Hamilton matrix elements in the AO basis [first term on the
rhs of Eq. (1)]

Ĥ0
µν =< φµ|Ĥ(ρ0)|φν >, (4)

where we neglect the so called crystal field terms when calcu-
lating the diagonal elements as H0

µµ = εµ with εµ being the
Kohn–Sham eigenvalue of the neutral, unconfined atom. The
non-diagonal elements are evaluated in a two-centre approx-
imation, Ĥ0

µν =< φµ|Ĥ(ρα
0 + ρ

β
0 )|φν > thereby neglect-

ing three-centre terms. The latter approximation is justified
by the early observation that the three centre terms and the
core orthogonalization integrals tend to cancel. The Hamil-
ton Ĥ0

µν and overlap Sµν =< φµ|φν > matrix elements are
calculated for interatomic distances on a relevant scale and
are tabulated. Therefore, the dominant computational cost is
the solution of the generalized eigenvalue problem for the
charge self-consistent Hamiltonian

Ĥµν = Ĥ0
µν + 1

2
Sµν

∑

γ

�qγ

(
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)
. (5)

(3) Finally, the term defined as Erep,
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2
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∫
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is approximated as a sum of two body potentials (for a more
detailed description, see e.g. [6])

Erep =
∑

αβ

Uαβ (7)

Finally, the approximate DFTB total energy reads as:

Etot =
∑

iµν

ci
µci

ν H0
µν + 1

2

∑

αβ

�qα�qβγαβ(Rαβ) + Erep

(8)

In practice, Uαβ is fitted as the difference of total energies
from DFT and the electronic part of DFTB with respect to
the bond length of certain bonds in reference molecules. For
example, to calculate Uαβ for the C–C interaction, we cal-
culate the DFT and DFTB electronic energies by stretching
and compressing the C–C bonds of H3CCH3, H2CCH2 and
HCCH around their equilibrium bond lengths and combine
the resulting energy curves. This step of the parametrization
is the most time consuming one, since the determination of
the pair potentials constitutes an N 2 effort within the peri-
odic table. Figure 1 shows the DFT total energy curve (solid
line), where the respective contributions from HCCH be-
tween about 2.1 and 2.35 a.u., from H2CCH2 between about
2.35 and 2.65 a.u. and from H3CCH3 for distances larger than
2.65 a.u. are combined into one curve. Note that the respec-
tive DFT total energy curves are shifted in order to obtain
one continuous curve. The same is done for the SCC-DFTB
electronic part [first two terms on the rhs of Eq. (8)]. Again,
the respective parts are shifted in order to obtain an over-
all continuous energy versus bond distance curve. Uαβ is
then calculated pointwise as the difference of the DFT and
DFTB energy curves and fitted by splines (or polynomials).
This procedure results in an analytical representation of Uαβ ,
which is continuous also in its first and second derivatives.
For other atom pairs, the same strategy is used. For example,
to calculate Uαβ for C–O, the molecules H3COH, H2CO and
CO were used, for the parametrization of C–H only CH4, for
sulphur see Ref. [34] and for zinc see [35].

In the whole parametrization procedure, no reference to
empirical data is made, that is, every step is based on DFT
calculations. For every atom pair (e.g. C–C or C–N), at most
two or three molecules are used for the parametrization. The
main point is to include information from the equilibrium
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Fig. 1 E-DFT shows the (shifted) total energy versus C–C distances
(in a.u.) for HCCH, H2CCH2 and H3CCH3, E-DFTB the same for the
electronic part [first two contributions in Eq. (8)] of DFTB total energy.
E-rep is the difference of this two curves
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distances of single, double and triple bonds. This usually
ensures a good description in other bonding situations, for
example, for the partial double bonds in benzene or
fullerenes. Of course, an extension to cover transition states
is also possible.

In a first version, the DFTB parameters were calculated
using a LDA functional [2] and SCC-DFTB has been tested in
detail for reaction energies, geometries rotational and proton
transfer barriers for a large set of small organic molecules
[36]. Using the PBE functional as the basis for parametri-
zation [1], in particular reaction energies could be improved
significantly. For 28 reactions we found a mean average devi-
ation from the G2 results of 4.3 kcal/mole [37]. Several reac-
tions, however, show deviations of up to 12 kcal/mole, while
geometrical parameters are in excellent agreement with ab
initio data [34,36,37]. The most severe shortcoming is
DFTB’s inability to describe the dihedral angel in hydro-
gen peroxide. For the investigated vibrational frequencies of
22 molecules, DFTB shows a 75 cm−1 mean absolute devi-
ation from the reference values [37]. Another study using
a larger set of 66 molecules containing O, N, C, H and S
atoms found an error (mean absolute deviation) of 57 cm−1

[38]. While vibrational frequencies are described quite well
for many important vibrational modes, some of them exhibit
substantial errors, for example, the C=C double bond stretch
and the NH modes are severely overestimated [36–39]. The
main emphasis during the parametrization for Zinc laid on
the description of biologically relevant chemical situations,
therefore, the DFTB parametrization has been tested in great
detail for ligand-binding energies, proton affinities and geom-
etries of a large set of Zinc containing compounds [35], a
strategy, which is also used in the development of parame-
ters for Copper and further transition metals.

3 Improving accuracy

Approximate methods utilizing a minimal basis set like the
SE quantum chemical methods or DFTB are limited in their
flexibility to represent various chemical environments with
appropriate accuracy, however, their main advantage is a very
good computational cost versus accuracy ratio. Therefore,
strategies to improve the accuracy should try not to sacri-
fice the computational efficiency significantly since this may
shrink the advantage over very efficient DFT-GGA imple-
mentations like the SIESTA [40] or QICKSTEP [41] program
packages.

(1) Obviously, one can go beyond the second-order approx-
imation by including the third-order term:

E3rd = 1
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∫∫ ′∫ ′′ ( δ3 E
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)
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Applying the same approximations as for the second-order
term [1], we can derive a simple third-order extension to
SCC-DFTB by keeping one-centre contributions only

E3rd = 1

6

∑

α

∂Uα

∂qα

�q3
α. (10)

The Hubbard derivative can be evaluated in the following
way: Hubbard parameters are calculated for various charge
states of the atom and fitted to a first order polynomial. The
numerical derivative of this resulting curve is taken as Hub-
bard derivative. This approximation takes into account the
(linear) charge dependence of the Hubbard parameter, which
may be important for highly charged species, since the hard-
ness of an atom is expected to change with its charge state.
This extra term turns out to be of particular importance for
more accurate proton affinities as discussed next. It should
be emphasized, that this extension does not improve the per-
formance of DFTB in general, but only when large charge
transfer within the molecular systems becomes important.

A second extension regarding the charge-dependent term
consists in the use of a different scheme to evaluate the atomic
charges �qα . Recently, Kalinowski et al. [42] have imple-
mented the CM3 scheme from Cramer and Truhler into DFTB
with great success. The molecular charge distribution and
also the molecular dipole moments are much improved. How-
ever, the influence on other properties like reaction energies,
geometries or vibrational frequencies is expected to be small.

Third, one can optimize the γ function used to interpolate
between the cases Rαβ → ∞ and Rαβ = 0. In SE theory,
several choices for the coulomb interaction are used, one of
them being the so called Klopman–Ohno scaling

γαβ = 1
√

Rαβ + 0.25
(
1/Uα + 1/Uβ

)2
, (11)

or the Mataga–Nishimoto scaling

γαβ = 1

Rαβ + 0.5
(
1/Uα + 1/Uβ

) , (12)

γ in DFTB has a quite similar curve shape, being slightly
more repulsive in the covalent binding region than the func-
tion of Klopman–Ohno. However, it is more complicated in
its functional form and consists of an 1/Rαβ part and an
exponentially decaying short range part Sαβ [1],

γαβ = 1/Rαβ − Sαβ. (13)

Sαβ describes the deviation of γαβ from the 1/Rαβ behaviour
with increasing overlap of α and β and is responsible for the
convergence of γαβ to a finite value at zero distance. The
determination of γαα as Uα implies that the extension of the
atomic charge density and its chemical hardness are inversely
proportional [1]. While this holds approximately for the sec-
ond and third-row elements, hydrogen deviates substantially
from this behaviour. To account for this, we allow γαβ to
deviate from the given functional form when hydrogen is
involved (i.e. for X–H interactions, X=heavy elements) by
introducing an additional term f (αβ):

γαβ = 1/Rαβ − Sαβ ∗ f (αβ). (14)

By damping the short-range term, γαβ becomes more repul-
sive especially in the region of covalent binding (1 − 2 Å).
This leads to a larger polarization of the respective (polar)
bond, which turns out to improve hydrogen bonding in
particular.
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Fourth, one could improve the description of the second-
order term by going beyond the monopole approximation of
the charge density fluctuations on atoms α, δρα for example,
by accounting for dipole–dipole interactions as for example,
in the MNDO framework [43]. Till now, no attempts have
been made in this regard.

(2) One obvious extension is to improve the basis set, that
is, to augment it with a second set of valence and polarization
functions. In some cases, like sulphur [34] and phosphorus,
inclusion of polarization functions is necessary, in particular
to describe the hypervalent species. The use of polarization
functions on hydrogen to improve hydrogen bonding is suc-
cessful in principle [13], but not recommended due to the
significant increase of the computational cost. Due to the
same reason the use of split valence basis sets, although pos-
sible in principle, has been avoided till now. The computa-
tional cost would increase by nearly one order of magnitude
when going to a double zeta basis. Clearly, this decision lim-
its DFTB accuracy in several ways, for example, it reduces
the molecular polarizability [32] and probably also the Pauli
repulsion in intermolecular interactions, which leads to the
small intermolecular distances in hydrogen-bonds [13] and
stacked complexes [44], and probably leads to an overesti-
mation of the strain energy in small ring molecules [37].

The neglect of the so called crystal field terms for the com-
putation of the diagonal matrix elements and the three-centre
terms may be a further factor reducing DFTBs flexibility to
respond to different environments. Here, in particular highly
coordinated phases may be treated insufficiently, as has been
shown in an extension of a TB method by including these
terms [45]. The neglect of these terms in DFTB is not due
to the computational cost, but due to the highly sophisticated
problem of finding a balanced description without running
into a prevalent parametrization effort.

(3) There are several choices for the treatment of Erep:
first, one could compute it from first principles and tabulate
in a similar way as the matrix elements. However, the param-
etrization of Erep with respect to DFT calculations probably
leads to a higher accuracy. The fitting procedure of Erep could
be made much more sophisticated, in particular by taking
more information into the data set, that is, not only equi-
librium geometries but also transition state structures. This
again, however, may increase the fitting effort substantially.

Therefore, there are several ways to improve DFTB while
maintaining its efficiency. Also a basis set extension is an
option, however, less favoured. Erep is definitely the term,
which can be changed most easily and is an ideal candidate for
improving DFTBs performance for specific chemical envi-
ronments, that is, for a SRP. This has been done successfully,
for example, to improve DFTBs description of geometries
and vibrational frequencies [22].

4 Description of biological structures

The strenght of DFTB is definitely its accuracy for geome-
tries of even larger structures. It has been successfully applied

to peptides, yielding very good structures and relative ener-
gies for the various conformations in this complex energy
landscape [46–48]. Interesting insight into the dynamics of
peptides and proteins has been obtained by long timescale
MD within QM/MM and O(N ) QM/MM implementations
in comparison with classical forced fields [16,19].

DFTB gives a good description of DNA base geometries
as well [49], and also reproduces the sugar puckering. This
allows its application to questions related to DNA and DNA-
intercalator interactions [50–53], after being augmented with
empirical dispersion.

The protonated Schiff base retinal (pSB) is a polyene
chain, which is linked to the protein backbone via a proton-
ated Schiff base and acts as the chromophore in the familiy
of retinal proteins. This molecule has a quite complicated
electronic structure, which is a challenge to computational
chemistry, since exchange and correlation effects have to be
included for a balanced description. DFTB has been shown to
describe ground state properties of pSB (bond length alterna-
tion of the polyene chain, torsional barriers, and so on) with
an accuracy comparable with the full DFT methods, being
about three orders of magnitude faster [54]. Since this ligand
is difficult to parametrize for empirical force fields, DFTB
has been used in QM/MM algorithms to calculate optimized
geometries and MD trajectories [55], which were the basis for
the calculation of retinal absorption energies [56]. Recently,
it has been successfully applied to refine the rhodopsin crystal
structure [57].

5 Adding empirical dispersion to DFT

In principle, DFT yields the exact ground state density, which
also includes the long range vdW forces however, it has been
recognized quite early that common LDA and GGA function-
als do not account for dispersion forces [58–60], in partic-
ular for the long range component (C6 R−6 and higher con-
tributions). As has been shown for the interaction of rare
gas dimers, several GGAs result in purely repulsive interac-
tions, while others like PW91 and in particular LDA lead to
attractive interactions, however, largely overestimating [58,
60–63] interaction energies. Clearly, current GGA function-
als cover only the short ranged (overlap dependent), exponen-
tially decaying, contribution [58,62] to the dispersion energy.
However, this is covered very differently by the various GGA
functionals [62,64]. Moreover, although the exchange part
should be purely repulsive for rare gas dimers, the magnitude
of repulsion varies with the functional, which can be traced
back to their different behaviours at the small density and
high reduced gradient region [61,65]. GGAs can lead even
to an artificial (wrong) attraction at the exchange only level
(PW91) [63]. Different GGA functionals seem to behave
very different in both their exchange and correlation parts
[66], thereby, possibly overestimating Paul repulsion (B88)
or artificially leading to attraction (PW91 exchange) [63] and
cover correlation effects due to the short range overlap term
in varying degrees [62].
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Further, although DFT performs quite well for hydro-
gen bonding in general, deficiencies in the description of the
angular dependence of the GGA potential energy surfaces
have been reported, probably again due to the missing dis-
persion interaction [67–69].

A simple combination of existing functionals may bal-
ance the individual parts of exchange and correlation in a
better, but completely empirical way [70–72], that is, may
lead to a compensation of artificial attraction of PW91 and
excessive repulsion of B88, however, will not solve the prob-
lem of the missing long range contribution. Modifications
of PBE, xPBE [74] and revPBE [75,76] seem to lead to a
balanced treatment of the short range part of dispersion and
exchange repulsion, as already indicated by the behavior of
the enhancement factor in the large gradient limit. However,
this does not lead to a satisfactory description of vdW com-
plexes, since for example, DNA base pairs are definitely not
bound at the GGA level even using PW91 (which overbinds
the rare gas dimers) [73], that is, the long range part of dis-
persion, which is not in the region of overlap effects is defini-
tively missing. A similar conclusion has been drawn recently
from a study of molecular crystals [77].

Approaches to calculate the long range parts from DFT
have been suggested either by calculating the monomer polar-
izabilities at imaginary frequencies [78,79] or through DFT
SAPT theory [80–82], both approaches, however, are not
applicable for intramolecular dispersion effects. There are
various attempts to construct functionals including an appro-
priate long range part, as can be found for example, in Refs.
[76,83–85].

Another route to include the vdW interactions is by empir-
ically adding them in the spirit of the HF+dispersion (HFD)
calculations several decades ago [86] (revisited, e.g by Ref.
[87]). Recently, a post-Hartree–Fock model for the dispersion
interaction [88,89] has been proposed.

In principle, this procedure can be also applied to DFT,
however, in this case a double counting of correlation contri-
butions in the overlap region will be introduced. Therefore,
the damping function, which in HFD has the task to avoid
artificial singularities becomes peculiar in the case of DFT.
The problem of double counting cannot be avoided but only
be empirically taken care of by designing the damping func-
tion and the empirical C6 parameters in order to reproduce a
large set of reference data.

Adding empirical dispersion with a special choice of a
damping function f (Rαβ) (which rapidly approaches zero
for short distances),

E = EDFTB −
∑

αβ

f (Rαβ)
Cαβ

R6
αβ

, (15)

and empirical Cαβ coefficients worked in DFTB rightaway,
when comparing DNA base pair stacking energies with
those from MP2 [44]. This good agreement is confirmed
for an extended set of stacked molecules by comparing with
coupled cluster results (to be published). As mentioned previ-
ously, intermolecular distances are underestimated in general,

probably due to underestimation of overlap repulsion within
the minimal basis set.

Obviously, dispersion is crucial for DNA base pair stack-
ing and interaction of bases with intercalators and DFTB +
dispersions have been applied successfully in a couple of
studies to these problems [50–53]. Interestingly, dispersion
is also crucial for the conformations and relative energies
of peptides and proteins. Without dispersion, proteins may
be instable and relative energies of various polypetide con-
formations are largely in error (for a review, see Ref. [14]),
showing the need for current DFT functionals to be aug-
mented with empirical dispersion before being applied to
biological problems.

Augmenting full DFT with empirical dispersion in the
same way, leads to results which are dependent on the DFT
functional and damping function used [63,90,91], since both,
C6 coefficients and the damping function should be calibrated
in order to account for the double counting. The different
amounts to which GGAs cover both Pauli repulsion and dis-
persion within the overlap regime have to be taken into ac-
count as for example, in the work of Grimme [92]. Grim-
me scaled the dispersion energy by 0.7 when adding it onto
PBE, thereby accounting for the fact that PBE (similar to
PW91) is too attractive at the exchange only level already,
and by scaling by 1.4 when using BLYP, taking into account
the excessive Pauli repulsion of the B88 exchange functional
(the scaling factors were the subject of optimization with re-
spect to a large data set). Probably one of the functionals
like XLYP, revPBE, where Pauli repulsion and dispersion in
the overlap region are covered in a more balanced way, is
even a better starting point for augmenting with empirical
dispersion.

6 Excited states and DFT(B)

Within DFT, the most promising route to excited states of
molecules is via the time-dependent DFT (TDDFT) response
formalism, which is already implemented into various DFT
codes and is now increasingly used. Therefore, we have imple-
mented this formalism also within the framework of our SCC-
DFTB method [24], showing reasonable results for excited
state energies when compared with the full TDDFT results
(and exhibiting the same problems, as discussed next).

To compute excited state energies in the TDDFT frame-
work, in addition to the Kohn–Sham energy differencesωi j =
ε j − εi the so called coupling matrix

Ki jσ,klτ =
∫ ∫

� iσ (r)� jσ (r)
(

1

|r − r′| +
δ2 Exc

δρσ (r) δρτ (r′)

)

�k j (r′)�l j (r′)drdr′ (16)

has to be evaluated, which leads to the excitation energies ωI
after solving the eigenvalue problem
∑

i jσ

[
ω2

i jδikδ jlδστ + 2
√

ωi j Ki jσ,klτ
√

ωkl

]
F I

i jσ

= ωI F I
klτ . (17)
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The main difference between the integral in Eq. (16) and
the second-order term in Eq. (1) is that the second derivative
is not taken at ρ0 and that the integral contains the transi-
tion density � i (r)� j (r) instead of the density ρ(r). Similar
to the approximation of the second-order term in Eq. (1),
we apply a monopole approximation to the transition density
leading to the transition charges on atom α, qi j

α = ∑
µεα

∑
ν

1
2

(
ci
µSµνc j

ν + c j
µSµνci

ν

)
and approximate the second deriv-

ative again with the γαβ function described previously.

Ki jσ,klτ =
∑

α,β

qα
i j

[
γαβ + (2δστ − 1)mαβ

]
qβ

kl , (18)

where mαβ is calculated from the second derivative of Exc
with respect to magnetization. The various approximations
involved including that of using a minimal basis set of course
leads to a loss of accuracy with respect to full DFT, however,
the formalism is several orders of magnitude faster than full
DFT [24]. TD–DFTB has been benchmarked with respect to
TDDFT for a set of small organic molecules [24,25].

Although many successful and promising applications
of TDDFT in Physics and Chemistry have been reported,
Biology seems to favour chromphores, which bring current
GGA functionals to their limits. Commonly occurring mol-
ecules like polyenes (β-carotenoids) or porphyrenes exhibit
strongly ionic excited states, which have been shown to be
described quantitatively wrong using TDDFT [93] and even
qualitative failures have been reported when studying the
excited states of potential energy surfaces [26]. This is con-
nected to observations of other groups, describing deficien-
cies of DFT with respect to polarizabilities of conjugated
chains [10]. The situation is even worse, when considering in-
termolecular [95,96] or intramolecular charge transfer exci-
tations [26]. Applying these methods to retinal absorption
energies, dramatic failures have been found. In particular, the
wrong asymptotic description of charge transfer (CT) exci-
tations is related to the local character of the DFT XC kernel
[26,95,96].

New developments in non-local (orbital dependent) XC
functionals [98] may provide a solution to these problems
and we are currently testing several options within the SCC–
DFTB framework.

A different route to incorporate many body effects into
the calculations of DFT excitation energies is followed in the
GW [97] and Bethe–Salpeter equations, which are currently
implemented into DFTB.

Because of the problems of current DFT functionals with
CT systems, we tested the semi-empirical OM2 method in
combination with the MRCI algorithm [9,100] and the newly
developed ab initio MRCI method SORCI [101]. We as-
sessed the performance of these and other, currently used,
computational approaches to accurately model changes in
absorption energies with respect to changes in geometry and
applied external electric fields [56]. In this article we illus-
trate the high sensitivity of absorption energies on the ground
state structure of retinal, which varies significantly with the
computational method used for geometry optimization. The

response to external fields, in particular to point charges,
which model the protein environment in combined QM/MM
applications, is a crucial feature, which is not properly ren-
dered by previously used methods, such as TDDFT, complete
active space self-consistent field (CASSCF), and HF or SE
configuration interaction singles (CIS). This is discussed in
detail for the example of bacteriorhodopsin (bR), a protein
which blue-shifts the retinal gas phase excitation energy by
about 0.5 eV [56].

The combination of SCC-DFTB QM/MM optimized
geometries with SORCI QM/MM excited state calculations
leads to a bR excitation energy of 2.34 eV being close to the
experimental value of 2.18 eV.

As a result of this study, we propose a combination of
the fast DFTB method for computing QM/MM ground state
optimized geometries or MD trajectories and OM2/MRCI
and SORCI for calculation of excitation energies as a prom-
ising route to study optical properties in various photopro-
teins. A first successful application to the problem of colour
tuning shows that computational approaches have the capa-
bility to reproduce the experimental data regarding mutation
experiments and can lead to a mechanistic explanation of the
structural determinants of optical properties of photoproteins.

7 DFTB and Hydrogen bonds

Hydrogen bonding energies are largely overestimated in DFT-
LDA, however, a much better description is given with GGA
functionals. The BLYP and B3LYP functionals slightly under-
estimate hydrogen bond strengths, while PBE seems to slightly
overestimate them (see, e.g. Ireta et al. [69] and references
therein). Problems in describing the angular dependence of
hydrogen bonding properly may be related to the deficiency
with respect to dispersion interactions at the GGA level, as
mentioned above [67–69].

DFTB describes hydrogen bonds quite well in terms of
structures, thereby slightly underestimating the hydrogen
bonding distances by about 0.1 Å on average, again, prob-
ably due to the underestimation of Pauli repulsion within
the minimal basis set. Also, hydrogen bonding energies are
systematically underestimated by about 1–2 kcal/mole [13,
17,44,102].

To improve the description of DFTB hydrogen bonds,
three possibilities exist, each by modifying one of the three
terms in the DFTB total energy expression Eq. (8).

One option is to modify the Erep term by effectively
introducing an artificial minimum in the X–H (X: S, O, N,
C) potentials at the corresponding hydrogen bonding dis-
tance, thereby, increasing the interaction energy to the desired
hydrogen bond strength. This can be compared with the strat-
egy of the MNDO/M model [103], where hydrogen bonding
in MNDO was improved by modifying the core–core repul-
sion. We tried this option and it is moderately successful, the
overall description can be improved, that is, the systematic
underestimation of hydrogen bond strengths can be removed
(data not shown). However, the resulting model is not very
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flexible, for example, it is not able to properly account for
cooperativity in hydrogen bonding (e.g. in water clusters).
This is no surprise since cooperativity cannot be covered by
simple two-body potentials, and, related to that, the descrip-
tion of strong hydrogen bonded complexes is not satisfactory.

A second option is to modify the term containing the
Hamilton Matrix H0

µν in Eq. (8). The main effect may be
gained by increasing the basis set, rather than by improv-
ing the integral approximations. Therefore, we have added
polarization functions to the hydrogen atoms, as suggested
by Jug and Geudtner [104] for the SINDO1 model. The result-
ing hydrogen bonding energies and geometries look very
promising [13], however, at the expense of an increasing
computational cost. Adding p functions on hydrogens nearly
doubles the basis set size for biological molecules (assum-
ing the systems to consist of 50% hydrogen atoms and 50%
heavy atoms), therefore, leading to a factor of about 8 in the
CPU time.

The third option is to modify the second-order term in
Eq. (8) as suggested previously by changing the functional
form of γ . By choosing an appropriate damping for the short
range part in the γ function, an increased interaction in the
region of the covalent bond can be obtained, that is, in the
region of 1–3 Å where γ deviates from 1/R. This leads to
an increased polarization of the molecule and the increased
dipole moment leads to an stronger intermolecular interac-
tion, that is, stronger hydrogen bonds. Since (bio)molecules
are on average slightly underpolarized within DFTB, which
can be seen for example, for the dipole moments of small pep-
tide fragments [46], the increased coulombic interaction in
the modified γ function directly compensates for this short-
comings. This modification does not increase the computa-
tional cost and leads to a balanced description of weak and
strong hydrogen bonds including cooperativity effects.

The indication, that the lack of dispersion interactions in
DFT shows up also for hydrogen bonded systems, suggests to
include the empirical dispersion correction for these systems
also from the beginning.

8 Proton transfer reactions

The accuracy of computational methods for proton transfer
(PT) reactions can be estimated beforehand by looking at
two (independent) properties: barrier heights can be studied
for model systems like the protonated water dimer or mal-
ondhyde, the accuracy for reaction energies can be estimated
from gas phase proton affinities and deprotonation energies
of the donor and acceptor molecules (or models).

Pure DFT (GGA) functionals seem to underestimate the
barriers substantially, while HF overestimates them largely
[114,115]. Both methods, therefore, are not appropriate for
studying proton transfer reactions. Due to error compensa-
tion, the hybrid B3LYP functional tends to reproduce higher
level calculations quite well, as can be seen for example,
from the performance for some low barrier transfer systems
like H7N+

2 , H5O+
2 and malondehyde [109,114,115]. When

the barrier is low (≈ 5 kcal/mol), B3LYP underestimates PT
barriers by about 1–2 kcal/mol, for higher barriers, this error
increases to 2–4 kcal/mol (unpublished results). B3LYP may
lead to a good estimate of barrier enthalpies due to a further
error cancellation: as described in the review of Gao and
Truhlar [116], corrections for zero point vibrational ener-
gies (ZPE) usually lower PT barriers by about 2–4 kcal/mol.
Therefore, neglect of ZPEs may bring B3LYP results into
reasonable agreement with experimental data.

DFT seems to be quite reliable with respect to protonation
and deprotonation energies [117–119], although differences
to higher level calculations of few kcal/mol for specific sys-
tems can be found [18,105]. When the proton is bound to
an extended conjugated chain like in the protonated Schiff
base retinal, considerable errors of DFT can be found due to
its tendency to overpolarize these chains [10] and thereby, to
overstabilize the extra positive charge along the chain.

Several studies found DFTB PT barrier heights in reasona-
ble agreement with the corresponding values from B3LYP
[18,36,109,112], therefore, DFTB tends to underestimate
barrier heights as well. For example, our good agreement
with experimental results for the PT barrier of the first PT step
in bacteriorhodopsin [111,112] may be due to the discussed
error cancellation (lower barriers versus ZPE). Therefore,
ZPE corrections may be successfully taken into account only
at higher levels of theory (MP4 or CCSD). Since geometries
at the SCC-DFTB level have been shown to be quite reliable,
one could use PT pathways calculated with DFTB refined by
higher level single point energies (dual-level approach).

The PT reaction profile in LADH [105] however, shows
one of the inaccuracies of the DFTB method, finding an
≈ 10 kcal error in the reaction energy of the first PT step. This
can be traced back to the inaccuracy of DFTB in describing
protonation and deprotonation energies of the involved pro-
ton donors and acceptors. One possible solution consists in
going beyond the second-order approximation: by including
third-order terms, the protonation and deprotonation ener-
gies can be significantly improved. For the description of
highly charged, most anionic species a dependence of the
chemical hardness (Hubbard parameter) on the charge state
of the atom seems to become crucial. The effect can be
demonstrated for the isolated water molecule: the proton-
ation energy of water evaluated with second-order DFTB is
in good agreement with higher level results, and does not
change when including third-order terms. The deprotonation
energy (H2O → OH− +H+) is in error by about 40 kcal/mol
at the second-order level, reducing to few kcal/mol when
including the third-order term. Deprotonation energies of
acids (R-COOH) at the secnd-order DFTB are still about
10 kcal/mol in error, reducing to few kcal/mole at the third-
order. This behaviour can be found for nearly all anions, go-
ing from second-to-third-order DFTB leads to a significant
improvement, while the positively charged compounds are
already mostly in good agreement with higher level results
and do not change upon inclusion of the third order term.

However, specific problems with nitrogen in certain chem-
ical environments, mostly for sp3 nitrogen, could not be
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resolved by the third-order terms: here, we found errors of
about 10 kcal/mole. We first recognized this problem when
investigating intramolecular PT reactions in the DNA bases
guanine and uracil, where proton acceptors can be either oxy-
gen or nitrogen. To correct this error, we developed a special
parametrization for nitrogen by modifying the N–H repulsive
potential to correct for the wrong energetics. This potential
has been already applied to the first PT in bacteriorhodpsin,
where the proton moves from the nitrogen of the Schiff-base
retinal to a nearby aspartate [111,112], and to the PT in car-
bonic anhydrase.

Hopefully, the third-order extension in combination with
the SRP for nitrogen-containing species will provide a meth-
odology, which allows for reliable treatment of PT reactions
in biological systems without any need for further SRPs.

9 Conclusion

Although DFTB has been applied successfully to many prob-
lems of interest, it should be kept in mind that it is an approx-
imate method with a certain, limited flexibility to adjust to
different chemical environments. We have discussed several
extensions – from improvements of the DFTB approxima-
tion (e.g. third-order expansion) upto ad hoc fixes of DFT
failures (dispersion forces)- which do not affect the compu-
tational efficiency. Other, more involved improvements like
an extended basis set may be incorporated in the near future,
however, this would move DFTB out of the “middleground”
of computational methods [120], that is, concerning com-
putational efficiency it would come closer to the full DFT
methods instead of being in the “middle”, between empirical
force field and ab initio methods, where SE methods fill an
obvious gap.

DFTB has been applied successfully to determine struc-
tures and dynamic behaviour of many biomolecules like
peptides, DNA and different types of ligands and its use as
a high-level method in this context has been discussed re-
cently [14]. In general, DFTB seems to be quite reliable in
terms of molecular structures, a requirement for its future use
in QM/QM and dual-level schemes. Concerning energetics,
vibrational frequencies and properties, we can summarize as
follows:

(1) Due to their limited flexibility, SE methods (and DFTB)
should be tested before application for every class of struc-
tures/reactions independently in comparison with higher level
methods. However, due to the problems of DFT (dispersion,
CT excitations, PT barriers, transition metals), it is not always
a good reference and higher level methods may be a better
choice. This is feasible now since computationally cheaper ab
initio variants like local MP2 or local coupled-cluster meth-
ods are becoming available.

(2) For applications, where the intrinsic accuracy of DFTB
is not sufficient it may be combined with higher level methods
in various ways: it may be used either as a fast method, which
allows for sufficient sampling or to perform the costly reac-
tion path calculations, while the final energetics is improved/

corrected at a higher level method by applying dual-level
(Truhlar), ONIOM (Morokuma) or QM/QM type methods.
A different type of QM/QM combination has been proposed
for the determination of IR intensities [18], where geometry
and Hessian are calculated with DFTB while the dipole deriv-
atives along the normal modes are calculated with B3LYP,
which may be a good compromise between efficiency and
accuracy.

(3) Due to the limited flexibility, it may not be possi-
ble to achieve the desired accuracy for all desired proper-
ties simultaneously. For example, it may not be possible to
obtain both, very accurate energetics and vibrational prop-
erties, within one parametrization. Therefore, there may be
different parameter sets for different purposes, for example, a
special parametrization for vibrational frequencies is in pro-
gress. Another example is the proton affinity, where it may
be necessary to have two sets of N–H parameters, one for
the standard applications, the other for studying PT reac-
tions including nitrogen as a donor/acceptor. In principle, it
is possible to develop SRPs for certain classes of reactions.
This may be a way to combine the requirements of com-
putational efficiency needed for appropriate sampling and
inherent high accuracy for the description of the particular
reaction of interest.
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